Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
South Med J ; 116(5): 427-433, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298269

ABSTRACT

OBJECTIVES: Current evidence favors plasma to be effective against coronavirus disease 2019 (COVID-19) in critically ill patients in the early stages of infection. We investigated the safety and efficacy of convalescent plasma in specifically late-stage (designated as after 2 weeks of hospital admission) severe COVID-19 infection. We also conducted a literature review on the late-stage use of plasma in COVID-19. METHODS: This case series examined eight COVID-19 patients admitted to the intensive care unit (ICU) who met criteria for severe or life-threatening complications. Each patient received one dose (200 mL) of plasma. Clinical information was gathered in intervals of 1 day pretransfusion and 1 hour, 3 days, and 7 days posttransfusion. The primary outcome was effectiveness of plasma transfusion, measured by clinical improvement, laboratory parameters, and all-cause mortality. RESULTS: Eight ICU patients received plasma late in the course of COVID-19 infection, on average at 16.13 days postadmission. On the day before transfusion, the averaged initial Sequential Organ Failure Assessment (SOFA) score, PaO2:FiO2 ratio, Glasgow Coma Scale (GCS), and lymphocyte count were 6.5, 228.03, 8.63, and 1.19, respectively. Three days after plasma treatment, the group averages for the SOFA score (4.86), PaO2:FiO2 ratio (302.73), GCS (9.29), and lymphocyte count (1.75) improved. Although the mean GCS improved to 10.14 by posttransfusion day 7, the other means marginally worsened with an SOFA score of 5.43, a PaO2:FiO2 ratio of 280.44, and a lymphocyte count of 1.71. Clinical improvement was noted in six patients who were discharged from the ICU. CONCLUSIONS: This case series provides evidence that convalescent plasma may be safe and effective in late-stage, severe COVID-19 infection. Results showed clinical improvement posttransfusion as well as decreased all-cause mortality in comparison to pretransfusion predicted mortality. Randomized controlled trials are needed to conclusively determine benefits, dosage, and timing of treatment.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Blood Component Transfusion , Plasma , COVID-19 Serotherapy , Immunization, Passive/adverse effects , Immunization, Passive/methods
2.
mBio ; 14(3): e0042823, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2304328

ABSTRACT

Measurement of antibody content and function after a viral illness is important for diagnosis and selection of the best convalescent plasma (CP) units for passive immunization. Zhang et al. (mBio 14:e03523-22, 2013, https://doi.org/10.1128/mbio.03523-22) analyzed over 19,000 coronavirus disease 2019 (COVID-19) CP (CCP) samples from the early days of the COVID-19 pandemic and reported a moderately strong correlation between antibody amount and neutralizing titer. Strikingly, about one-third of the samples had little or no neutralizing activity. The results provide a detailed glimpse of the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in immunologically naive humans and reveal major differences in the quality of CP units collected for passive therapy before antibody screening. Heterogeneity in CCP quality undoubtedly contributed to the variable therapeutic efficacy. Analysis of the COVID-19 serology data suggest that, for the next infectious disease emergency, the best approach after quick establishment of methods for robust antibody-level stratification would be to use CP units in the top quintile of antibody content and neutralizing capacity.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Pandemics , Antibodies, Viral , COVID-19 Serotherapy , Antibodies, Neutralizing , Immunization, Passive/methods
3.
BMJ Open ; 13(4): e071277, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2294191

ABSTRACT

INTRODUCTION: COVID-19 convalescent plasma (CCP) is a possible treatment option for COVID-19. A comprehensive number of clinical trials on CCP efficacy have already been conducted. However, many aspects of CCP treatment still require investigations: in particular (1) Optimisation of the CCP product, (2) Identification of the patient population in need and most likely to benefit from this treatment approach, (3) Timing of administration and (4) CCP efficacy across viral variants in vivo. We aimed to test whether high-titre CCP, administered early, is efficacious in preventing hospitalisation or death in high-risk patients. METHODS AND ANALYSIS: COVIC-19 is a multicentre, randomised, open-label, adaptive superiority phase III trial comparing CCP with very high neutralising antibody titre administered within 7 days of symptom onset plus standard of care versus standard of care alone. We will enrol patients in two cohorts of vulnerable patients [(1) elderly 70+ years, or younger with comorbidities; (2) immunocompromised patients]. Up to 1020 participants will be enrolled in each cohort (at least 340 with a sample size re-estimation after reaching 102 patients). The primary endpoint is the proportion of participants with (1) Hospitalisation due to progressive COVID-19, or (2) Who died by day 28 after randomisation. Principal analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION: Ethical approval has been granted by the University of Ulm ethics committee (#41/22) (lead ethics committee for Germany), Comité de protection des personnes Sud-Est I (CPP Sud-Est I) (#2022-A01307-36) (ethics committee for France), and ErasmusMC ethics committee (#MEC-2022-0365) (ethics committee for the Netherlands). Signed informed consent will be obtained from all included patients. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. TRIAL REGISTRATION: Clinical Trials.gov (NCT05271929), EudraCT (2021-006621-22).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Hospitalization , Immunization, Passive/methods , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
4.
Curr Opin Pulm Med ; 27(3): 169-175, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-2286794

ABSTRACT

PURPOSE OF REVIEW: Coronavirus disease 2019 (COVID-19) is an acute multisystem disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Investigations are ongoing in the search for effective therapeutics, with clinical approaches evolving based upon such evidence. RECENT FINDINGS: The antiviral agent, remdesivir, and the immunomodulator, dexamethasone, are the first therapeutics for which there is evidence of efficacy from randomized trials. Subgroup analyses suggest remdesivir is beneficial in hospitalized patients whose severity of illness falls at the lower end of the spectrum, while dexamethasone is more beneficial in hospitalized patients whose severity of illness falls at the higher end of the spectrum. We recommend that inpatients who require supplemental oxygen but are not mechanically ventilated receive both remdesivir and dexamethasone, and inpatients who require mechanical ventilation receive dexamethasone monotherapy. Additional evidence regarding anti-SARS-CoV-2 antibodies, convalescent plasma, and a variety of antiinterleukin therapies is forthcoming. SUMMARY: The body of evidence related to COVID-19 therapeutics continues to evolve and, as a result, management is likely to change with time. As new evidence is generated and published, the optimal approach to managing patients with COVID-19 should be reconsidered.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/therapy , Dexamethasone/pharmacology , Respiration, Artificial/methods , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , COVID-19/immunology , Humans , Immunization, Passive/methods , Immunologic Factors/pharmacology , Patient Selection , SARS-CoV-2/drug effects , COVID-19 Serotherapy
5.
Dtsch Med Wochenschr ; 148(7): 423-426, 2023 03.
Article in German | MEDLINE | ID: covidwho-2267038

ABSTRACT

Convalescent plasma was discussed as a therapeutic option early in the course of the COVID-19 pandemic. However, until the onset of the pandemic, only the results of mostly small single-arm studies in other infectious diseases were available, which did not prove efficacy. In the meantime, the results of more than 30 randomized trials of COVID-19 convalescent plasma (CCP) for treatment of COVID-19 are available 1. Despite the heterogeneity of the results, conclusions for an optimal use are possible.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Pandemics , Immunization, Passive/methods , COVID-19 Serotherapy
6.
Transfus Apher Sci ; 62(2): 103680, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2272765

ABSTRACT

BACKGROUND: Convalescent plasma has been used for a long time for the treatment of various infectious diseases. The principle is to collect antibody-containing plasma from recovered patients and to transfuse the plasma to infectious patients thereby modifying their immune system. This approach was also used in the SARS-CoV-2 pandemic when no specific drugs were available for the treatment of the disease. DESIGN AND METHODS: This short narrative review reports on relevant studies of collection and transfusion of Covid-19 convalescent plasma (CCP) from 2020 until August 2022. Clinical patients' outcome parameters such as need for ventilation, length of hospital stay and mortality were analysed. RESULTS: Heterogenous patient groups were studied resulting in difficult comparability of the studies. High titer of transfused neutralizing antibodies, early onset of CCP treatment and moderate disease activity were identified as key parameters for effective treatment. Special subgroups of patients were identified to benefit from CCP treatment. No relevant side effects were observed during and after collection and transfusion of CCP. CONCLUSIONS: Transfusion of CCP plasma is an option for the treatment of special subgroups of patients suffering from SARS-CoV-2 infection. CCP can be easily used in low-to-middle income countries where no specific drugs are available for treatment of the disease. Further clinical trials are necessary to define the role of CCP in the treatment of SARS-CoV-2 disease.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19/etiology , SARS-CoV-2 , Immunization, Passive/methods , COVID-19 Serotherapy , Antibodies, Neutralizing , Antibodies, Viral
7.
mBio ; 14(2): e0337922, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2252238

ABSTRACT

Convalescent plasma is a promising therapy for coronavirus disease 2019 (COVID-19), but its efficacy in intensive care unit (ICU) patients in low- and middle-income country settings such as Suriname is unknown. Bedside plasma separation using the HemoClear device made convalescent plasma therapy accessible as a treatment option in Suriname. Two hundred patients with severe SARS-CoV-2 infection requiring intensive care were recruited. Fifty eight patients (29%) received COVID-19 convalescent plasma (CCP) treatment in addition to standard of care (SOC). The CCP treatment and SOC groups were matched by age, sex, and disease severity scores. Mortality in the CCP treatment group was significantly lower than that in the SOC group (21% versus 39%; Fisher's exact test P = 0.0133). Multivariate analysis using ICU days showed that CCP treatment reduced mortality (hazard ratio [HR], 0.35; 95% confidence interval [CI], 0.18 to 0.66; P = 0.001), while complication of acute renal failure (creatinine levels, >110 mol/L; HR, 4.45; 95% CI, 2.54 to 7.80; P < 0.0001) was independently associated with death. Decrease in chest X-ray score in the CCP treatment group (median -3 points, interquartile range [IQR] -4 to -1) was significantly greater than that in the SOC group (median -1 point, IQR -3 to 1, Mann-Whitney test P = 0.0004). Improvement in the PaO2/FiO2 ratio was also significantly greater in the CCP treatment group (median 83, IQR 8 to 140) than in the SOC group (median 35, IQR -3 to 92, Mann-Whitney P = 0.0234). Further research is needed for HemoClear-produced CCP as a therapy for SARS-CoV-2 infection together with adequately powered, randomized controlled trials. IMPORTANCE This study compares mortality and other endpoints between intensive care unit COVID-19 patients treated with convalescent plasma plus standard of care (CCP), and a control group of patients hospitalized in the same medical ICU facility treated with standard of care alone (SOC) in a low- and middle-income country (LMIC) setting using bedside donor whole blood separation by gravity (HemoClear) to produce the CCP. It demonstrates a significant 65% survival improvement in HemoClear-produced CCP recipients (HR, 0.35; 95% CI, 0.19 to 0.66; P = 0.001). Although this is an exploratory study, it clearly shows the benefit of using the HemoClear-produced CCP in ICU patients in the Suriname LMIC setting. Additional studies could further substantiate our findings and their applicability for both LMICs and high-income countries and the use of CCP as a prepared readiness method to combat new viral pandemics.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19/etiology , SARS-CoV-2 , Suriname/epidemiology , COVID-19 Serotherapy , Critical Care , Intensive Care Units , Immunization, Passive/methods , Treatment Outcome
8.
Front Immunol ; 14: 1085883, 2023.
Article in English | MEDLINE | ID: covidwho-2251618

ABSTRACT

Introduction: ARS-CoV-2 is a respiratory pathogen currently causing a worldwide pandemic, with resulting pathology of differing severity in humans, from mild illness to severe disease and death. The rhesus macaque model of COVID-19 was utilized to evaluate the added benefit of prophylactic administration of human post-SARS-CoV-2 infection convalescent plasma (CP) on disease progression and severity. Methods: A pharmacokinetic (PK) study using CP in rhesus monkeys preceded the challenge study and revealed the optimal time of tissue distribution for maximal effect. Thereafter, CP was administered prophylactically three days prior to mucosal SARS-CoV-2 viral challenge. Results: Results show similar viral kinetics in mucosal sites over the course of infection independent of administration of CP or normal plasma, or historic controls with no plasma. No changes were noted upon necropsy via histopathology, although there were differences in levels of vRNA in tissues, with both normal and CP seemingly blunting viral loads. Discussion: Results indicate that prophylactic administration with mid-titer CP is not effective in reducing disease severity of SARS-CoV-2 infection in the rhesus COVID-19 disease model.


Subject(s)
COVID-19 , Animals , Humans , Macaca mulatta , SARS-CoV-2 , Immunization, Passive/methods , COVID-19 Serotherapy
9.
Ann Hematol ; 101(10): 2337-2345, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2270323

ABSTRACT

Patients with hematological malignancies (HMs) are at a higher risk of developing severe form and protracted course of COVID-19 disease. We investigated whether the combination of viral replication inhibition with remdesivir and administration of anti-SARS-CoV-2 immunoglobulins with convalescent plasma (CP) therapy might be sufficient to treat B-cell-depleted patients with COVID-19. We enrolled 20 consecutive patients with various HMs with profound B-cell lymphopenia and COVID-19 pneumonia between December 2020 and May 2021. All patients demonstrated undetectable baseline anti-SARS-CoV-2 immunoglobulin levels before CP. Each patient received at least a complete course of remdesivir and at least one unit of CP. Previous anti-CD20 therapy resulted in a more prolonged SARS-CoV-2 PCR positivity compared to other causes of B-cell lymphopenia (p = 0.004). Timing of CP therapy showed a significant impact on the clinical outcome. Simultaneous use of remdesivir and CP reduced time period for oxygen weaning after diagnosis (p = 0.017), length of hospital stay (p = 0.007), and PCR positivity (p = 0.012) compared to patients who received remdesivir and CP consecutively. In addition, time from the diagnosis to CP therapy affected the length of oxygen dependency (p < 0.001) and hospital stay (p < 0.0001). In those cases where there were at least 10 days from the diagnosis to plasma administration, oxygen dependency was prolonged vs. patients with shorter interval (p = 0.006). In conclusion, the combination of inhibition of viral replication with passive immunization was proved to be efficient and safe. Our results suggest the clear benefit of early, combined administration of remdesivir and CP to avoid protracted COVID-19 disease among patients with HMs and B-cell lymphopenia.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Hematologic Neoplasms , Lymphopenia , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/therapy , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Immunization, Passive/methods , Lymphopenia/etiology , Lymphopenia/therapy , Oxygen , SARS-CoV-2 , COVID-19 Serotherapy
10.
Annu Rev Immunol ; 40: 349-386, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-2255830

ABSTRACT

Antibodies have been used to prevent or treat viral infections since the nineteenth century, but the full potential to use passive immunization for infectious diseases has yet to be realized. The advent of efficient methods for isolating broad and potently neutralizing human monoclonal antibodies is enabling us to develop antibodies with unprecedented activities. The discovery of IgG Fc region modifications that extend antibody half-life in humans to three months or more suggests that antibodies could become the principal tool with which we manage future viral epidemics. Antibodies for members of most virus families that cause severe disease in humans have been isolated, and many of them are in clinical development, an area that has accelerated during the effort to prevent or treat COVID-19 (coronavirus disease 2019). Broad and potently neutralizing antibodies are also important research reagents for identification of protective epitopes that can be engineered into active vaccines through structure-based reverse vaccinology.


Subject(s)
Antibodies, Viral , COVID-19 , Animals , Antibodies, Neutralizing , Epitopes , Humans , Immunization, Passive/methods
11.
Viruses ; 15(3)2023 03 16.
Article in English | MEDLINE | ID: covidwho-2259168

ABSTRACT

Background: While passive immunotherapy has been considered beneficial for patients with severe respiratory viral infections, the treatment of COVID-19 cases with convalescent plasma produced mixed results. Thus, there is a lack of certainty and consensus regarding its effectiveness. This meta-analysis aims to assess the role of convalescent plasma treatment on the clinical outcomes of COVID-19 patients enrolled in randomized controlled trials (RCTs). Methods: A systematic search was conducted in the PubMed database (end-of-search: 29 December 2022) for RCTs on convalescent plasma therapy compared to supportive care\standard of care. Pooled relative risk (RR) and 95% confidence intervals were calculated with random-effects models. Subgroup and meta-regression analyses were also performed, in order to address heterogeneity and examine any potential association between the factors that varied, and the outcomes reported. The present meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 34 studies were included in the meta-analysis. Per overall analysis, convalescent plasma treatment was not associated with lower 28-day mortality [RR = 0.98, 95% CI (0.91, 1.06)] or improved 28-day secondary outcomes, such as hospital discharge [RR = 1.00, 95% CI (0.97, 1.03)], ICU-related or score-related outcomes, with effect estimates of RR = 1.00, 95% CI (0.98, 1.05) and RR = 1.06, 95% CI (0.95, 1.17), respectively. However, COVID-19 outpatients treated with convalescent plasma had a 26% less risk of requiring hospital care, when compared to those treated with the standard of care [RR = 0.74, 95% CI (0.56, 0.99)]. Regarding subgroup analyses, COVID-19 patients treated with convalescent plasma had an 8% lower risk of ICU-related disease progression when compared to those treated with the standard of care (with or without placebo or standard plasma infusions) [RR = 0.92, 95% CI (0.85, 0.99)] based on reported outcomes from RCTs carried out in Europe. Finally, convalescent plasma treatment was not associated with improved survival or clinical outcomes in the 14-day subgroup analyses. Conclusions: Outpatients with COVID-19 treated with convalescent plasma had a statistically significantly lower risk of requiring hospital care when compared to those treated with placebo or the standard of care. However, convalescent plasma treatment was not statistically associated with prolonged survival or improved clinical outcomes when compared to placebo or the standard of care, per overall analysis in hospitalized populations. This hints at potential benefits, when used early, to prevent progression to severe disease. Finally, convalescent plasma was significantly associated with better ICU-related outcomes in trials carried out in Europe. Well-designed prospective studies could clarify its potential benefit for specific subpopulations in the post-pandemic era.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19/etiology , COVID-19 Serotherapy , Randomized Controlled Trials as Topic , Immunization, Passive/methods , Pandemics
12.
Virol J ; 20(1): 53, 2023 03 27.
Article in English | MEDLINE | ID: covidwho-2264557

ABSTRACT

BACKGROUND: Hyperimmune convalescent COVID-19 plasma (CCP) containing anti-SARS-CoV-2 neutralizing antibodies (NAbs) was proposed as a therapeutic option for patients early in the new coronavirus disease pandemic. The efficacy of this therapy depends on the quantity of neutralizing antibodies (NAbs) in the CCP units, with titers ≥ 1:160 being recommended. The standard neutralizing tests (NTs) used for determining appropriate CCP donors are technically demanding and expensive and take several days. We explored whether they could be replaced by high-throughput serology tests and a set of available clinical data. METHODS: Our study included 1302 CCP donors after PCR-confirmed COVID-19 infection. To predict donors with high NAb titers, we built four (4) multiple logistic regression models evaluating the relationships of demographic data, COVID-19 symptoms, results of various serological testing, the period between disease and donation, and COVID-19 vaccination status. RESULTS: The analysis of the four models showed that the chemiluminescent microparticle assay (CMIA) for the quantitative determination of IgG Abs to the RBD of the S1 subunit of the SARS-CoV-2 spike protein was enough to predict the CCP units with a high NAb titer. CCP donors with respective results > 850 BAU/ml SARS-CoV-2 IgG had a high probability of attaining sufficient NAb titers. Including additional variables such as donor demographics, clinical symptoms, or time of donation into a particular predictive model did not significantly increase its sensitivity and specificity. CONCLUSION: A simple quantitative serological determination of anti-SARS-CoV-2 antibodies alone is satisfactory for recruiting CCP donors with high titer NAbs.


Subject(s)
COVID-19 , Humans , COVID-19 Vaccines , COVID-19 Serotherapy , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G , Immunization, Passive/methods
13.
Vox Sang ; 118(4): 296-300, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2234972

ABSTRACT

BACKGROUND AND OBJECTIVES: There is a concern about a possible deleterious effect of pathogen reduction (PR) with methylene blue (MB) on the function of immunoglobulins of COVID-19 convalescent plasma (CCP). We have evaluated whether MB-treated CCP is associated with a poorer clinical response compared to other inactivation systems at the ConPlas-19 clinical trial. MATERIALS AND METHODS: This was an ad hoc sub-study of the ConPlas-19 clinical trial comparing the proportion of patients transfused with MB-treated CCP who had a worsening of respiration versus those treated with amotosalen (AM) or riboflavin (RB). RESULTS: One-hundred and seventy-five inpatients with SARS-CoV-2 pneumonia were transfused with a single CCP unit. The inactivation system of the CCP units transfused was MB in 90 patients (51.4%), RB in 60 (34.3%) and AM in 25 (14.3%). Five out of 90 patients (5.6%) transfused with MB-treated CCP had worsening respiration compared to 9 out of 85 patients (10.6%) treated with alternative PR methods (p = 0.220). Of note, MB showed a trend towards a lower rate of respiratory progressions at 28 days (risk ratio, 0.52; 95% confidence interval, 0.18-1.50). CONCLUSION: Our data suggest that MB-treated CCP does not provide a worse clinical outcome compared to the other PR methods for the treatment of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19 Serotherapy , Immunization, Passive/methods , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , SARS-CoV-2 , Treatment Outcome
14.
Curr Opin Allergy Clin Immunol ; 21(6): 553-558, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-2161180

ABSTRACT

PURPOSE OF REVIEW: To provide an update of the current state of antibody therapy for Severe Acute Respiratory Syndrome Coronavirus 2 infection that has progressed immensely in a very short time period. RECENT FINDINGS: Limited clinical effect of classical passive immunotherapy (plasma therapy, hyperimmune immunoglobulin [IgG] preparations) whereas monoclonal antibody therapy, if initiated early in the disease process, shows promising results. SUMMARY: Although antibody therapy still remains to be fully explored in patients with COVID-19, a combination of IgG monoclonal antibodies against the receptor-binding domain of the spike protein currently appears to provide the best form of antibody therapy, Immunoglobulin A dimers and Immunoglobulin M pentamers also show promising preliminary therapeutic results.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , COVID-19/blood , COVID-19/immunology , Clinical Trials as Topic , Humans , Immunization, Passive/methods , Immunoglobulin A/therapeutic use , Immunoglobulin G/therapeutic use , Immunoglobulin M/therapeutic use , Treatment Outcome , COVID-19 Serotherapy
15.
Cell Rep Med ; 3(11): 100811, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2150820

ABSTRACT

Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP), a passive polyclonal antibody therapeutic agent, has had mixed clinical results. Although antibody neutralization is the predominant approach to benchmarking CCP efficacy, CCP may also influence the evolution of the endogenous antibody response. Using systems serology to comprehensively profile severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) functional antibodies of hospitalized people with COVID-19 enrolled in a randomized controlled trial of CCP (ClinicalTrials.gov: NCT04397757), we find that the clinical benefits of CCP are associated with a shift toward reduced inflammatory Spike (S) responses and enhanced nucleocapsid (N) humoral responses. We find that CCP has the greatest clinical benefit in participants with low pre-existing anti-SARS-CoV-2 antibody function and that CCP-induced immunomodulatory Fc glycan profiles and N immunodominant profiles persist for at least 2 months. We highlight a potential mechanism of action of CCP associated with durable immunomodulation, outline optimal patient characteristics for CCP treatment, and provide guidance for development of a different class of COVID-19 hyperinflammation-targeting antibody therapeutic agents.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Immunization, Passive/methods , Antibodies, Viral/therapeutic use , Nucleocapsid , COVID-19 Serotherapy
16.
Ann Intern Med ; 173(2): JC3, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-2103352

ABSTRACT

SOURCE CITATION: Ye Z, Rochwerg B, Wang Y, et al. Treatment of patients with nonsevere and severe coronavirus disease 2019: an evidence-based guideline. CMAJ. 2020;192:E536-45. 32350002.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Humans , Immunization, Passive/methods , Pandemics , Plasma , Pneumonia, Viral/immunology , SARS-CoV-2 , Severity of Illness Index , COVID-19 Serotherapy
17.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099852

ABSTRACT

Therapeutic blood products including convalescent plasma/serum and immunoglobulins concentrated from convalescent plasma, such as intravenous immunoglobulins or hyperimmune globulins, and monoclonal antibodies are passive immunotherapy options for novel coronavirus disease 2019 (COVID-19). They have been shown to improve the clinical status and biological and radiological parameters in some groups of COVID-19 patients. However, blood products are still potential sources of virus transmission in recipients. The use of pathogen reduction technology (PRT) should increase the safety of the products. The purpose of this study was to determine the impact of solvent/detergents (S/D) procedures on SARS-COV-2 infectivity elimination in the plasma of donors but also on COVID-19 convalescent serum (CCS) capacity to neutralize SARS-COV-2 infectivity. In this investigation, S/D treatment for all experiments was performed at a shortened process time (30 min). We first evaluated the impact of S/D treatments (1% TnBP/1% TritonX-45 and 1% TnBP/1% TritonX-100) on the inactivation of SARS-COV-2 pseudoparticles (SARS-COV-2pp)-spiked human plasma followed by S/D agent removal using a Sep-Pak Plus C18 cartridge. Both treatments were able to completely inactivate SARS-COV-2pp infectivity to an undetectable level. Moreover, the neutralizing activity of CCS against SARS-COV-2pp was preserved after S/D treatments. Our data suggested that viral inactivation methods using such S/D treatments could be useful in the implementation of viral inactivation/elimination processes of therapeutic blood products against SARS-COV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Virus Inactivation , Immunization, Passive/methods , Antibodies, Viral , Antibodies, Neutralizing , COVID-19 Serotherapy
18.
Medicine (Baltimore) ; 101(31): e29912, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-2051697

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a novel acute respiratory infectious disease that can lead to multiple-organ dysfunction in patients with severe disease. However, there is a lack of effective antiviral drugs for COVID-19. Herein, we investigated the efficacy and safety of convalescent plasma (CP) therapy for treating severe COVID-19 in an attempt to explore new therapeutic methods. The clinical data of 3 imported patients with severe COVID-19 who underwent treatment with CP and who were quarantined and treated in a designated COVID-19 hospital from March 2020 to April 2020 were collected and analyzed. The 3 patients, including a 57-year-old male, 65-year-old female, and 59-year-old female, were clinically classified as having severe COVID-19. The main underlying diseases included hypertension, diabetes, sequelae of cerebral infarction, and postoperative thyroid adenoma. The common symptoms included cough, fever, and shortness of breath. All patients received antiviral drugs and other supportive treatments. Additionally, CP treatment was administered. At 48 to 72 hours after the CP transfusion, all 3 of the patients exhibited an improvement and alleviation of symptoms, an elevated arterial oxygen saturation, and decreased C-reactive protein and interleukin-6 levels. The counts of the total lymphocytes and T lymphocytes (CD3+) and their subsets (CD4 + and CD8+) were also obviously increased. Repeated chest computed tomography also revealed obvious absorption of the lesions in the bilateral lungs. Only 1 patient had a mild allergic reaction during the CP infusion, but no severe adverse reactions were observed. The early treatment with CP in patients with severe COVID-19 can rapidly improve the condition of the patients, and CP therapy is generally effective and safe.


Subject(s)
COVID-19 , Aged , Antiviral Agents/therapeutic use , COVID-19/therapy , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , SARS-CoV-2 , COVID-19 Serotherapy
19.
Sci Rep ; 12(1): 16385, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050519

ABSTRACT

Passive immunotherapy with convalescent plasma may be the only available agent during the early phases of a pandemic. Here, we report safety and efficacy of high-titer convalescent plasma for COVID-19 pneumonia. Double-blinded randomized multicenter placebo-controlled trial of adult patients hospitalized with COVID-19 pneumonia. The intervention was COVID-19 convalescent plasma and placebo was saline allocated 2:1. The primary outcome was clinical status 14 days after the intervention evaluated on a clinical ordinal scale. The trial was registered at ClinicalTrials.Gov, NCT04345289, 14/04/2020. The CCAP-2 trial was terminated prematurely due to futility. Of 147 patients randomized, we included 144 patients in the modified intention-to-treat population. The ordinal clinical status 14 days post-intervention was comparable between treatment groups (odds ratio (OR) 1.41, 95% confidence interval (CI) 0.72-2.09). Results were consistent when evaluating clinical progression on an individual level 14 days after intervention (OR 1.09; 95% CI 0.46-1.73). No significant differences in length of hospital stay, admission to ICU, frequency of severe adverse events or all-cause mortality during follow-up were found between the intervention and the placebo group. Infusion of convalescent plasma did not influence clinical progression, survival or length of hospitalization in patients with COVID-19 pneumonia.


Subject(s)
COVID-19 , Adult , COVID-19/therapy , Hospitalization , Humans , Immunization, Passive/methods , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
20.
mBio ; 13(5): e0175122, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2038241

ABSTRACT

COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors. We conducted this study to evaluate the effectiveness and safety of nAb titer-defined CCP in adults admitted to an academic referral hospital. Patients positive by a SARS-CoV-2 nucleic acid amplification test and with symptoms for <10 days were eligible. Participants received either CCP with nAb titers of >1:640 (high-titer group) or ≥1:160 to 1:640 (standard-titer group) in addition to standard of care treatments. The primary clinical outcome was time to hospital discharge, with mortality and respiratory support evaluated as secondary outcomes. Adverse events were contrasted by CCP titer. Between 28 August and 4 December 2020, 316 participants were screened, and 55 received CCP, with 14 and 41 receiving high- versus standard-titer CCP, respectively. Time to hospital discharge was shorter among participants receiving high- versus standard-titer CCP, accounting for death as a competing event (hazard ratio, 1.94; 95% confidence interval [CI], 1.05 to 3.58; Gray's P = 0.02). Severe adverse events (SAEs) (≥grade 3) occurred in 4 (29%) and 23 (56%) of participants receiving the high versus standard titer, respectively, by day 28 (risk ratio, 0.51; 95% CI, 0.21 to 1.22; Fisher's P = 0.12). There were no observed treatment-related AEs. (This study has been registered at ClinicalTrials.gov under registration no. NCT04524507). IMPORTANCE In this study, in a high-risk population of patients admitted for COVID-19, we found an earlier time to hospital discharge among participants receiving CCP with nAb titers of >1:640 compared with participants receiving CCP with a lower nAb titer and no CCP-related AEs. The significance of our research is in identifying a dose response of CCP and clinical outcomes based on nAb titer. Although limited by a small study size, these findings support further study of high-nAb-titer CCP defined as >1:640 in the treatment of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Immunization, Passive/methods
SELECTION OF CITATIONS
SEARCH DETAIL